Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1374498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645393

RESUMO

Information about the resistance and adaptive potential of tree species and provenances is needed to select suitable planting material in times of rapidly changing climate conditions. In this study, we evaluate growth responses to climatic fluctuations and extreme events for 12 provenances of northern red oak (Quercus rubra L.) that were tested across three trial sites with distinct environmental conditions in Germany. Six provenances each were sourced from the natural distribution in North America and from introduced stands in Germany. We collected increment cores of 16 trees per provenance and site. Dendroecological methods were used to compare provenance performance and establish climate-growth relationships to identify the main growth limiting factors. To evaluate the provenance response to extreme drought and frost events, three site-specific drought years were selected according to the Standardized Precipitation Evapotranspiration Index (SPEI) and 2010 as a year with an extreme late frost event. Resistance indices for these years were calculated and assessed in relation to overall growth performance. We observed a high variation in growth and in the climate sensitivity between sites depending on the prevailing climatic conditions, as well as a high intra-specific variation. Overall, summer drought and low temperatures in the early growing season appear to constrain the growth of red oak. The resistance of provenances within sites and extreme years showed considerable rank changes and interaction effects. We did not find a trade-off between growth and resistance to late frost, namely, fast growing provenances had a high frost hardiness. Further, there was no evidence for a trade-off between growth and drought hardiness. Still, responses to drought or late frost differ between provenances, pointing to dissimilar adaptive strategies. Provenances from introduced (i.e. German) stands represent suitable seed sources, as they combine a higher growth and frost hardiness compared to their North American counterparts. Drought hardiness was slightly higher in the slow-growing provenances. The results provide a better understanding of the variable adaptive strategies between provenances and help to select suitable planting material for adaptive forest management.

2.
Science ; 353(6306): 1431-1433, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27708038

RESUMO

When confronted with an adaptive challenge, such as extreme temperature, closely related species frequently evolve similar phenotypes using the same genes. Although such repeated evolution is thought to be less likely in highly polygenic traits and distantly related species, this has not been tested at the genome scale. We performed a population genomic study of convergent local adaptation among two distantly related species, lodgepole pine and interior spruce. We identified a suite of 47 genes, enriched for duplicated genes, with variants associated with spatial variation in temperature or cold hardiness in both species, providing evidence of convergent local adaptation despite 140 million years of separate evolution. These results show that adaptation to climate can be genetically constrained, with certain key genes playing nonredundant roles.


Assuntos
Aclimatação/genética , Evolução Molecular , Genes de Plantas/fisiologia , Picea/fisiologia , Pinus/fisiologia , Temperatura Baixa , Duplicação Gênica , Genoma de Planta , Temperatura Alta , Metagenômica , Picea/genética , Pinus/genética
3.
Evol Appl ; 9(2): 409-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26834833

RESUMO

We investigated adaptation to climate in populations of two widespread tree species across a range of contrasting environments in western Canada. In a series of common garden experiments, bud phenology, cold hardiness, and seedling growth traits were assessed for 254 populations in the interior spruce complex (Picea glauca, P. engelmannii, and their hybrids) and for 281 populations of lodgepole pine (Pinus contorta). Complex multitrait adaptations to different ecological regions such as boreal, montane, coastal, and arid environments accounted for 15-20% of the total variance. This population differentiation could be directly linked to climate variables through multivariate regression tree analysis. Our results suggest that adaptation to climate does not always correspond linearly to temperature gradients. For example, opposite trait values (e.g., early versus late budbreak) may be found in response to apparently similar cold environments (e.g., boreal and montane). Climate change adaptation strategies may therefore not always be possible through a simple shift of seed sources along environmental gradients. For the two species in this study, we identified a relatively small number of uniquely adapted populations (11 for interior spruce and nine for lodgepole pine) that may be used to manage adaptive variation under current and expected future climates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...